La energía eólica es la energía que se puede lograr del movimiento que produce el viento al interaccionar con las palas de un aerogenerador. Esta energía, que sigue en proceso de desarrollo, nace como respuesta a una mayor demanda del consumo energético, la necesidad de garantizar la continuidad del suministro en zonas importadoras netas de recursos energéticos y de la búsqueda de la sostenibilidad en el uso de los recursos. En general las mejores zonas de vientos se encuentran en la costa, debido a las corrientes térmicas entre el mar y la tierra; las grandes llanuras continentales, por razones parecidas; y las zonas montañosas, donde se producen efectos de aceleración local.
Un aerogenerador es un generador eléctrico movido por una turbina accionada por el viento (turbina eólica). Sus precedentes directos son los molinos de viento que se empleaban para la molienda y obtención de harina. En este caso, la energía eólica, en realidad la energía cinética del aire en movimiento, proporciona energía mecánica a un rotor hélice que, a través de un sistema de transmisión mecánico, hace girar el rotor de un generador, normalmente un alternadortrifásico, que convierte la energía mecánica rotacional en energía eléctrica.
En este caso, la energía eólica, en realidad la energía cinética del aire en movimiento, proporciona energía mecánica a un rotor hélice que, a través de un sistema de transmisión mecánico, hace girar el rotor de un generador, normalmente un alternadortrifásico, que convierte la energía mecánica rotacional en energía eléctrica.
Existen diferentes tipos de aerogeneradores, dependiendo de su potencia, la disposición de su eje de rotación, el tipo de generador, etc.
Los aerogeneradores pueden trabajar de manera aislada o agrupados en parques eólicos o plantas de generación eólica, distanciados unos de otros, en función del impacto ambiental y de las turbulencias generadas por el movimiento de las palas.
Para aportar energía a la red eléctrica, los aerogeneradores deben estar dotados de un sistema de sincronización para que la frecuencia de la corriente generada se mantenga perfectamente sincronizada con la frecuencia de la red.
Ya en la primera mitad del siglo XX, la generación de energía eléctrica con rotores eólicos fue bastante popular en casas aisladas situadas en zonas rurales.
La energía eólica se está volviendo más popular en la actualidad, al haber demostrado la viabilidad industrial, y nació como búsqueda de una diversificación en el abanico de generación eléctrica ante un crecimiento de la demanda y una situación geopolítica cada vez más complicada en el ámbito de los combustibles tradicionales.
Aerogeneradores de eje horizontal
Son aquellos en los que el eje de rotación del equipo se encuentra paralelo al suelo. Ésta es la tecnología que se ha impuesto, por su eficiencia y confiabilidad y la capacidad de adaptarse a diferentes potencias.
Esquema de una turbina eólica:
1. Suelo
2. Conexión a la red eléctrica
3. Torre de contención
4. Escalera de acceso
5. Sistema de orientación
6. Góndola
7. Generador
8. Anemómetro
9. Freno
10. Transmisión
11. Palas
12. Inclinación de la pala hacia la derecha
13. Buje
14. Borde de ataque
15. Borde de salida
1. Suelo
2. Conexión a la red eléctrica
3. Torre de contención
4. Escalera de acceso
5. Sistema de orientación
6. Góndola
7. Generador
8. Anemómetro
9. Freno
10. Transmisión
11. Palas
12. Inclinación de la pala hacia la derecha
13. Buje
14. Borde de ataque
15. Borde de salida
Las partes principales de un aerogenerador de eje horizontal son:
- Rotor: las palas del rotor, construidas principalmente con materiales compuestos, se diseñan para transformar la energía cinética del viento en un momento torsor en el eje del equipo. Los rotores modernos pueden llegar a tener un diámetro de 42 a 80 metros y producir potencias equivalentes de varios MW. La velocidad de rotación está normalmente limitada por la velocidad de punta de pala, cuyo límite actual se establece por criterios acústicos.
- Góndola o nacelle: sirve de alojamiento para los elementos mecánicos y eléctricos (multiplicadora, generador, armarios de control, etc.) del aerogenerador.
- Caja de engranajes o multiplicadora: puede estar presente o no dependiendo del modelo. Transforman la baja velocidad del eje del rotor en alta velocidad de rotación en el eje del generador eléctrico.
- Generador: existen diferente tipos dependiendo del diseño del aerogenerador. Pueden ser síncronos o asíncronos, jaula de ardilla o doblemente alimentados, con excitación o con imanes permanentes.Lo podemos definir como parte del generador que convierte la energía en electricidad.
- La torre: sitúa el generador a una mayor altura, donde los vientos son de mayor intensidad y para permitir el giro de las palas y transmite las cargas del equipo al suelo.
- Sistema de control: se hace cargo del funcionamiento seguro y eficiente del equipo, controla la orientación de la góndola, la posición de las palas y la potencia total entregada por el equipo.
Todos los aerogeneradores de eje horizontal tienen su eje de rotación principal en la parte superior de la torre, que tiene que orientarse hacia el viento de alguna manera. Los aerogeneradores pequeños se orientan mediante una veleta, mientras que los más grandes utilizan un sensor de dirección y se orientan por servomotores o motorreductores.
Existen 2 tecnologías de generadores eléctricos: multi-polos y de imanes permanentes. Los primeros funcionan a velocidades del orden de 1000 rpm. Dado que la velocidad de rotación de las aspas es baja (12 rpm), requieren el uso de una caja reductora o multiplicadora para conseguir una velocidad de rotación adecuada. Los de imanes permanentes no requieren multiplicadora.
En la mayoría de los casos la velocidad de giro del generador está relacionada con la frecuencia de la red eléctrica a la que se vierte la energía generada (50 o 60 Hz).
En general, las palas están emplazada de tal manera que el viento, en su dirección de flujo, la encuentre antes que a la torre (rotor a barlovento). Esto disminuye las cargas adicionales que genera la turbulencia de la torre en el caso en que el rotor se ubique detrás de la misma (rotor a sotavento). Las palas se montan a una distancia razonable de la torre y tienen alta rigidez, de tal manera que al rotar y vibrar naturalmente no choquen con la torre en caso de vientos fuertes. El rotor suele estar inclinado 6º para evitar el impacto de las palas con la torre.
A pesar de la desventaja en el incremento de la turbulencia, se han construido aerogeneradores con hélices localizadas en la parte posterior de la torre, debido a que se orientan en contra del viento de manera natural, sin necesidad de usar un mecanismo de control. Sin embargo, la experiencia ha demostrado la necesidad de un sistema de orientación para la hélice que la ubique delante de la torre. Este tipo de montaje se justifica debido a la gran influencia que tiene la turbulencia en el desgaste de las aspas por fatiga. La mayoría de los aerogeneradores actuales son de este último modelo.
En general, los aerogeneradores modernos de eje horizontal se diseñan para trabajar con velocidades del viento que varían entre 3 y 25 m/s de promedio. La primera es la llamada velocidad de conexión y la segunda la velocidad de corte. Básicamente, el aerogenerador comienza produciendo energía eléctrica cuando la velocidad del viento supera la velocidad de conexión y, a medida que la velocidad del viento aumenta, la potencia generada es mayor, siguiendo la llamada curva de potencia.
Las aspas disponen de un sistema de control de forma que su ángulo de ataque varía en función de la velocidad del viento. Esto permite controlar la velocidad de rotación para conseguir una velocidad de rotación fija con distintas condiciones de viento.
Asimismo, es necesario un sistema de control de las velocidades de rotación para que, en caso de vientos excesivamente fuertes, que podrían poner en peligro la instalación, haga girar a las aspas de la hélice de tal forma que éstas presenten la mínima oposición al viento, con lo que la hélice se detendría.
Para aerogeneradores de gran potencia, algunos tipos de sistemas pasivos, utilizan características aerodinámicas de las aspas que hacen que aún en condiciones de vientos muy fuertes el rotor se detenga. Esto se debe a que él mismo entra en un régimen llamado "pérdida aerodinámica".
Aerogeneradores de eje vertical
Son aquellos en los que el eje de rotación se encuentra perpendicular al suelo. También se denominan VAWT (del inglés, Vertical Axis Wind Turbine), en contraposición a los de eje horizontal o HAWT.
Sus ventajas son:
- Se pueden situar más cerca unos de otros, debido a que no producen el efecto de frenado de aire propio de los HAWT, por lo que no ocupan tanta superficie.
- No necesitan un mecanismo de orientación respecto al viento, puesto que sus palas son omnidireccionales.
- Se pueden colocar más cerca del suelo, debido a que son capaces de funcionar con una menor velocidad del viento, por lo que las tareas de mantenimiento son más sencillas.
- Mucho más silenciosos que los HAWT.
- Mucho más recomendables para instalaciones pequeñas (de menos de 10 kW) debido a la facilidad de instalación, la dismunución del ruido y el menor tamaño.
Sus desventajas son:
- Al estar cerca del suelo la velocidad del viento es baja y no se aprovechan las corrientes de aire de mayor altura.
- Baja eficiencia.
- Mayor gasto en materiales por metro cuadrado de superficie ocupada que las turbinas de eje horizontal.
- No son de arranque automático, requieren conexión a la red para poder arrancar utilizando el generador como motor
- Tienen menor estabilidad y mayores problemas de fiabilidad que los HAWT. Las palas del rotor tienen tendencia a doblarse o romperse con fuertes vientos.